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Abstract 

Two full months (July 2003 and January 2004) of MODIS Atmosphere Level-3 data from 

the Terra and Aqua satellites are analyzed in order to characterize the horizontal 

variability of vertically integrated cloud optical thickness (“cloud inhomogeneity”) at 

global scales. The monthly climatology of cloud inhomogeneity is expressed in terms of 

standard parameters, initially calculated for each day of the month at spatial scales of 

1°x1°, and subsequently averaged at monthly, zonal, and global scales. Geographical, 

diurnal, and seasonal changes of inhomogeneity parameters are examined separately for 

liquid and ice phases, and separately over land and ocean. We find that cloud 

inhomogeneity is overall weaker in summer than in winter. For liquid clouds, it is also 

consistently weaker for local morning than local afternoon and over land than ocean. 

Cloud inhomogeneity is comparable for liquid and ice clouds on a global scale, but with 

stronger spatial and temporal variations for the ice phase, and exhibits an average 

tendency to be weaker for near overcast or overcast gridpoints of both phases. Depending 

on cloud phase, hemisphere, surface type, season, and time of day, hemispheric means of 

the inhomogeneity parameter ν (roughly the square of the ratio of optical thickness mean 

to standard deviation), have a wide range of ~1.7 to 4, while for the inhomogeneity 

parameter χ (the ratio of the logarithmic to linear mean) from ~0.65 to 0.8. Our results 

demonstrate that the MODIS Level-3 dataset is suitable for studying various aspects of 

cloud inhomogeneity and may prove invaluable for validating future cloud schemes in 

large scale models capable of predicting subgrid variability. 
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1. Introduction 

The non-linear interplay of solar and longwave radiation with cloud optical properties is a 

fundamental aspect of atmospheric radiative transfer with implications for the Earth’s 

climate that were already noted many years ago (e.g., Harshvardhan and Randall, 1985). 

In recent years, a plethora of studies examined various aspects of this interplay, but to our 

knowledge, only a handful was of global scope, namely the observational study of 

Rossow et al. (2002) and the model-based studies of Oreopoulos et al. (2004) and 

Räisänen et al. (2004). The present study, focusing only on a specific aspect of cloud 

variability, namely the horizontal fluctuations of total optical thickness τ   (hereafter 

“cloud inhomogeneity”) is also of global scope. Studies on this topic preceding Rossow 

et al. (2002) (hereafter RDC) provided an incomplete and often conflicting picture of the 

magnitude of cloud inhomogeneity as they were based on a limited number of scenes and 

different observational methods (Cahalan et al. 1994; Cahalan et al., 1995; Barker, 1996; 

Oreopoulos and Davies, 1998a; Pincus et al., 1999). In the following we make the case 

that, similar to the International Satellite Cloud Climatology Project (ISCCP) products 

used by RDC, higher level cloud products from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instrument aboard the Terra and Aqua satellites can provide 

a detailed picture of cloud inhomogeneity. 

Knowledge of the actual geographical and seasonal distribution of cloud 

inhomogeneity is essential in our effort to make it a diagnosed or predicted quantity that 

will improve representation of physical processes involving clouds in Large Scale 

Models (LSMs). These include both cloud formation and precipitation processes (e.g., 

Jakob and Klein, 1999), but also radiative processes at solar and thermal wavelengths. 
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The need to improve radiative processes arises from the fact that plane-parallel 

homogeneous (PPH) radiation flux calculations, i.e., calculations where only the mean 

cloud optical properties of the gridbox are used, often exhibit significant errors compared 

to Independent Column Approximation (ICA) calculations where averages of plane 

parallel calculations on individual cloudy columns (currently not explicitly resolved by 

LSMs) or integrals over the probability density function (PDF) of optical properties are 

calculated. These systematic errors, frequently referred to as plane parallel biases 

(Cahalan et al., 1994), stem from the nonlinear dependence of both shortwave (SW) and 

longwave (LW) fluxes on cloud optical properties. The magnitude of the errors depends 

on solar geometry (for SW), the average amount of cloud water, cloud vertical overlap, 

and the degree of cloud variability. The SW albedo error, for example, was found from 

theoretical and observational studies to have a range of 0.025 to 0.3 (according to the 

survey of relevant literature by RDC), suggesting a very substantial impact on the energy 

budget. LSM modelers would not want their efforts to simulate correct mean distributions 

of cloud properties be hampered by their inability to produce realistic radiation budgets. 

If the goal is to develop schemes that account either implicitly or explicitly for cloud 

inhomogeneity (e.g. Tompkins, 2002), it is only logical to assume that descriptions of its 

magnitude from global observations will aid the development of the relevant algorithms. 

Our paper provides important elements of this global description. It complements 

and expands RDC’s study in a number of ways: it uses different inhomogeneity 

parameters calculated at different spatial scales and applies for clouds that are classified 

in a different manner and whose properties are retrieved at different spatial resolution, 

and aggregated in different ways. It is organized as follows: First, we present in section 2 
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the various parameters that have in recent years been used as descriptors of cloud 

inhomogeneity. Then in section 3 we discuss which of these parameters can be obtained 

from the MODIS dataset and under what limitations, and how they are averaged at 

various temporal and spatial scales. Section 4 is the centerpiece of the paper and 

discusses cloud variability features such as differences between clouds of liquid and ice 

phase, morning and afternoon clouds, marine and continental clouds, winter and summer 

clouds, and relationships with cloud fraction. A summary of the findings, and their 

potential uses is offered in the final section. 

 

2. Measures of cloud inhomogeneity 

A short overview of the various parameters that have been used to quantify cloud 

inhomogeneity is provided below. Comparisons among the various horizontal 

inhomogeneity parameters provide insight on the features of the optical property 

distribution from which they were derived (see the excellent discussion by RDC).  

The inhomogeneity parameter χ first introduced by Cahalan et al. (1994) is defined 

as the ratio of the logarithmic and linear average of a cloud optical thickness distribution: 

 

  

! =
e
ln "

" 
  0 < χ ≤ 1     (1) 

 

with 

 

 

  

! = !p(!)d(!" )        (2) 



 6 

 

and 

  

ln!  defined similarly: 

 

 

  

ln! = ln!p(!)d!"        (3) 

 

p(τ) is the PDF of cloud optical thickness τ. The inception of χ was inspired by the fact 

that the reflected solar flux is a linear function of the logarithm of optical thickness for a 

wide range (~5 to ~30, depending on solar zenith angle–SZA) of optical thicknesses. 

Thus, the “effective” optical thickness χ

  

!  is the logarithmically averaged optical 

thickness and generally provides a better regional albedo estimate than 

  

!  when used as 

input in plane-parallel radiative transfer calculations (this is known as ETA–Effective 

Thickness Approximation). Oreopoulos and Davies (1998b) compared χ to χ0: 
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i.e., the ratio of the radiatively averaged optical thickness (the optical thickness that 

corresponds to the average reflectance –RICA– of a region, possibly also integrated over 

the SZA) to the linearly averaged optical thickness. The inhomogeneity parameter ε used 

by RDC to express the ISCCP cloud inhomogeneity climatology is simply 1-χ0. Note that 

derivation of χ0 from MODIS requires forward radiative transfer calculations to obtain 

RICA, and no results for this parameter are shown here. 
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A different class of cloud horizontal inhomogeneity measures is related to 

theoretical distributions that have been found to be good fits of observed PDFs of τ 

(Barker, 1996). For example, ν, the shape parameter of a gamma distribution, can be 

derived from the ratio of mean to standard deviation (στ) of the distribution, in which 

case it is said that it is derived from the Method of Moments (MOM): 

 

  

!
MOM

=
" 

#"

$ 

% 
& 

' 

( 
) 

2

        (5) 

 

Within the context of the gamma distribution, ν can also be estimated from the Maximum 

Likelihood Estimate (MLE) method (Wilks, 1995) which is less sensitive to outliers than 

MOM (Oreopoulos and Davies 1998b) and can be approximated by (Wilks, 1995): 
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The parameter ν (of both the MOM and MLE variety) can in principle also be inferred 

from satellite observations, and therefore from MODIS as well (as explained in the next 

section). Eqs. (1)-(6) are often also applied to PDFs of cloud water path (W). 

The various parameters defined above have their own advantages and disadvantages 

as descriptors of cloud inhomogeneity, and when intercompared can reveal properties of 

the PDF from which they were derived. For example, large deviations of χ from χ0 are 
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encountered for PDFs that are very wide, e.g., consisting of few very thick convective 

clouds mixed with very thin cirrus clouds as is common in the Tropics (RDC); large 

discrepancies between ν from MOM and MLE is indicative of ill-behaved PDFs, e.g., 

distributions with a small number of extremely large τ values that produce too small 

MOM values of ν for the resulting gamma distribution to be a good fit. In general, as 

RDC pointed out, the problem with inhomogeneity measures that involve calculations of 

the second moment of the PDF is that there may be convergence problems in the case of 

highly skewed or multimodal PDFs and in situations of limited sample population (e.g., 

from PDFs derived from a single snapshot in regions with low cloud cover). Additional 

criteria explained below made χ the primary focus of this study, while νMOM is the 

inhomogeneity parameter receiving the least attention. 

 

3. The MODIS dataset 

a. Analysis method 

For the analysis in this paper we rely on Level-3 (L-3) (Global Gridded) MODIS cloud 

products. These products describe the physical and radiative properties of clouds 

including cloud particle phase (ice vs. liquid water), effective cloud particle radius, cloud 

optical thickness, cloud top temperature, cloud top height, effective emissivity, and cloud 

fraction under both daytime and nighttime conditions (Platnick et al., 2003). There are 

three L-3 MODIS cloud products for daily (D3), eight-day (E3), and monthly (M3) time 

periods, collected from two platforms, Terra and Aqua. Each L-3 product contains 

statistics for various cloud parameters (also called Scientific DataSets or SDSs) generated 

from the Level-2 (L-2) (Orbital Swath) products. Statistics are summarized over a 1°x1° 
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global grid (King et al., 2003). In this study we only use D3 data, from which we extract 

the following SDSs (separately for the liquid and ice particle phases): mean, standard 

deviation and mean logarithm of τ, mean and standard deviation of W, histograms of τ 

and W, and mean (daytime) cloud fraction corresponding to successful cloud optical 

property retrievals. 

All these statistics are computed by subsampling pixel-level (L-2) values every 5th 

pixel along both spatial directions (King et al., 2003). Thus, the cloud statistics for an 

overcast 1°x1° gridpoint around the equator come from about ~480 pixels instead of the 

~12000 1-km pixels that originally fall within the gridpoint. Oreopoulos (2005) found 

that temporal (e.g., monthly) and/or spatial (e.g. zonal) averaging suppresses significantly 

the subsampling errors of χ and ν. For example, the percentage errors of monthly 

averages of individual gridpoints are usually below 10% for νMOM and νMLE. Errors for χ 

are even smaller (< 2%), and errors for all inhomogeneity parameters drop much further 

when zonal averages are taken.  

Two months (July 2003 and January 2004) of D3 data for both the Terra and Aqua 

platforms are analyzed. The data come in Hierarchical Data Format (HDF) files 

separately for each day of the month, and are freely available worldwide from the NASA-

Goddard Distributed Active Archive Center (DAAC) at http://daac.gsfc.nasa.gov.  

Cloud inhomogeneity from MODIS D3 data can be estimated in several ways. First, 

the inhomogeneity parameters χ, νMOM and νMLE can be calculated from either W or τ 

statistics. Second, the moments used in eq. (1), (5), (6) (or their counterparts for W) can 

be derived either from histograms or directly obtained as distinct SDSs (in the case of 

lnW only the histogram route is available). Third, one may wish to restrict the 
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presentation of the results to only one parameter. We chose to focus on the 

inhomogeneity parameter χ derived from moment SDSs of τ for the reasons given below, 

but νMLE values are still provided for the global and hemispheric results. 

 We opted to concentrate on inhomogeneity parameter results derived from SDSs of 

τ because it is the optical property directly retrieved from MODIS observations and the 

quantity that ultimately matters when estimating the radiative impact of cloud 

inhomogeneity. W on the other hand is derived by combining τ and effective radius (reff) 

retrievals and is by itself not sufficient for radiative calculations. We recognize that this 

choice may make validation of LSMs with this dataset somewhat more involved because 

in models it is W that is the fundamental quantity and τ is the by-product. 

The inhomogeneity parameter findings presented in the following (except where 

noted otherwise) are calculated from eq. (1), (5), (6) using the appropriate distinct SDS 

moments. We chose this path of calculation because the SDS moments are derived 

directly from the L-2 data and are therefore more accurate than those calculated from the 

histograms which are subject to bin discretization errors, especially for second order 

moments or when cloud fractions are small. This way we also avoid interference of 

histogram discretization effects in the inhomogeneity parameter comparisons between the 

two phases (liquid and ice phase histograms have different discretizations). 

There are several reasons why χ was given principal focus in this work. First, it 

suffers the least from L-3 subsampling as noted above. Second, because it is bounded by 

an upper value of 1 it can be more easily averaged than νMOM and νMLE which are 

unbounded (in the relatively few cases where individual gridpoint values of ν exceed 10, 
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their values were set back to 10 before temporal and spatial averaging). Third, χ is more 

physically intuitive as it represents the factor by which 

  

!  should be scaled to 

approximate the regional albedo, and can thus be more directly compared to ε of RDC. 

For those prefering inhomogeneity expressed in terms of ν, we include ν values (mainly 

νMLE) in the presentation of global-scale results (Tables 1 and 3) and provide a table 

(Table 2) to help convert monthly zonal values of χ to monthly zonal values of ν. 

The inhomogeneity measures obtained from the MODIS D3 dataset convey 

information mainly on spatial cloud variability since most regions are viewed only once 

by each satellite during daylight hours (this is less true for high latitudes where 

significant orbit overlap takes place). Spatial cloud inhomogeneity is of greater interest in 

this study than temporal variability because it is exactly the type we seek to advance in 

global modeling applications: layer cloud optical thickness varies with time in today’s 

LSMs, but spatial (subgrid) variations at specific time steps are not produced. For the 

purposes of a cloud inhomogeneity climatology, the relevant quantities are the mean 

monthly values of inhomogeneity parameters derived by averaging the daily values. 

The following equations are written for χ, but also apply for ν and are applied for 

each cloud phase (liquid/ice) separately. Only gridpoints for which the cloud fraction of 

the respective phase was greater than 0.1 and for which calculation of all three 

inhomogeneity parameters was possible (this implies that στ > 0 and y > 0) were used. 

Gridpoints not satisfying these conditions were either homogeneous (case στ = 0) or 

contained other ill-behaved PDFs. 
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For a 1°x1° region (m,n) in the mth meridional and nth latitudinal zone, the mean 

monthly value of the variability parameter χ is given by: 
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where Cl(m,n) is the cloud fraction for day l (also a D3 SDS given separately for each 

phase) and region (m,n), L is the number of days for which Cl(m,n) > 0.1 and calculation 

of all three inhomogeneity parameters was possible. Eq. (7) gives thus a weighted 

monthly mean value for a single gridpoint of the inhomogeneity parameter χ. 

Zonal monthly averages of χ can be calculated using the values from eq. (7): 
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M is the number of 1°x1° gridpoints in a specific latitude zone n for which all three 

inhomogeneity parameters are available, and 
 

!
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! / L  is the monthly 

averaged cloud fraction for those gridpoints. Global averages can be obtained for a single 

day or an entire month. For a single day: 
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where w(n)=cos[lat(n)] is the weight for each latitude zone calculated as the cosine at the 

center of the latitude zone, and N is the number of latitude zones. The monthly global 

averages are obtained from: 
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Eqs. (9) and (10) can also be used for hemispheric averages by appropriately setting the 

range of n values. Note that the cloud fraction Cl(m,n) used in eq. (7) and (9) is not the 

cloud fraction of the MODIS cloud mask algorithm, but rather the cloud fraction 

corresponding to the number of pixels for which successful retrievals of cloud optical 

properties were completed. This cloud fraction is somewhat lower than the cloud fraction 

from the mask algorithm since it does not include pixels for which observed and pre-

calculated radiances could not be matched for any vector of cloud properties. 

 

b. MODIS limitations 

MODIS can “see” only the total (integrated) optical thickness of one or more cloudy 

layers. A Column Radiation Model of an LSM capable of handling inhomogeneous 

clouds, on the other hand, would probably require the vertical profile of horizontal cloud 

variability. This cannot be provided by MODIS (which is not even providing the vertical 
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profile of 

  

! ). In the Tropics, for example, highly variable convective towers may be 

covered by thick but relatively homogeneous cirrus anvils and there would be no way for 

MODIS to untangle the inhomogeneity of the convective cloud. Another issue is “real” 

vs. “apparent” cloud inhomogeneity due to 3D radiative transfer effects present in 

MODIS observations. In the mid-latitudes, for instance, storm system clouds may look 

more inhomogeneous than they really are due to shadowing and side illumination effects 

not accounted for by the plane-parallel retrievals (Oreopoulos et al., 2000). In the first 

case, MODIS may underestimate the variability of convective clouds, in the second case, 

it may overestimate the variability of stratiform clouds. The systematic expressions of 

these MODIS limitations may actually aid the study of cloud inhomogeneity: the 

presence of 3D effects in cloud retrievals, and their apparent contributions to cloud 

inhomogeneity, may potentially be assessed from intercomparison among regions with 

climatologically similar single-layer clouds, but observed under different illumination 

conditions. Such issues will be given proper attention in a future study. Finally, we note 

that our analysis does not distinguish between inhomogeneity due to top height variations 

of clouds with relatively weak variations of extinction and inhomogeneity due to 

extinction variations of clouds with weakly varying top heights. 

 

4. MODIS inhomogeneity climatology 

a. Inhomogeneity parameter comparison and dependence on method of calculation 

We start the analysis of inhomogeneity by discussing the sensitivity of global values of 

inhomogeneity parameters to the choice of calculation method (i.e., SDS moment-based 

vs. SDS histogram-based, as discussed previously). 
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Table 1 shows !C"# $% , !
MLE

C"# $% , and !
MOM

C"# $% for liquid and ice clouds from moment-

based (index “1”) and histogram-based (index “2”) estimates. These are values from the 

Terra platform for July ’03 and are calculated using eq. (10) (and its exact counterparts 

for νMOM and νMLE). Both τ and W-based estimates are provided. Also provided are 

estimates based on “QA” (Quality Assurance) SDS moments, i.e., moments calculated 

using the QA quality flags (Platnick et al., 2003) as weight. The results of Table 1 

indicate that the moment-based and histogram-based methods give very similar global 

results for τ with only a slight tendency for smaller values (larger inhomogeneity) for the 

histogram-based method. The difference in νMOM between the two methods is a bit more 

pronounced for W whose histogram discretization is poorer than that of τ. On the other 

hand, use of QA-weighted statistics (only moments are available, not histograms) seems 

to have a greater impact, with global cloud inhomogeneity decreasing significantly 

(parameter values increasing). This is because lower weight is assigned to dubious 

retrievals which likely fall close to the extrema of the allowed range of assumed τ values. 

Since the results shown in the remainder of the paper are not based on QA-weighted 

statistics, it is conceivable that we overestimate cloud heterogeneity to some extent. 

Considering that all monthly zonal inhomogeneity results that follow are expressed 

in terms of χ, it would be useful to have an empirical relationship to convert values of 

any one of the three inhomogeneity parameters χ , νMOM and νMLE to values of the other 

two. The relationships between χ and the ν’s are in general different from gridpoint to 

gridpoint since they depend on PDF details, but we found that for zonal averages they can 

be approximated well by exponential functions. Table 2 summarizes the conversion rules 
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from !C  to !
MLE

C  and !
MOM

C  based on these exponential fits. The fits are of lower 

quality for high values of !C  where they can lead to !
MOM

C  values that are higher 

than !
MLE

C  (the opposite is usually true). 

Figure 1 shows !C
(n)  from eq. (8) for July’03/Jan’04 Terra liquid and ice clouds 

for both τ-based and W-based values, obtained from the histogram SDSs. In certain 

latitude zones particle size variations tend to reduce variability of liquid clouds (as in 

Räisänen et al., 2003) and increase variability of ice clouds. The differences are stronger 

at low latitudes and somewhat stronger in January for liquid clouds and in July for ice 

clouds. Still, extended regions of agreement between the two estimates can be seen in the 

midlatitudes, for both phases. On a global basis (Table 1), the values of !C"# $%  indicate 

that liquid clouds are slightly less homogeneous for W-based estimates while the opposite 

is observed for ice clouds, but differences are quite small. This result is confirmed by the 

!
MLE

C"# $%  values for liquid clouds, but not those for ice clouds which are about the same. In 

the case of νMOM, where W-based estimates are possible from both the SDS moments and 

the W histograms the results depend on the method of calculation and are inconclusive. 

All in all, reff variations do not appear to cause dramatic changes to the values of the 

inhomogeneity parameters on a global scale although they have some impact at smaller 

scales. This may be because the variability of reff is limited by the fact that particle size 

retrievals depend mostly on the cloud microphysical state near the cloud top (e.g., 

Platnick, 2000). Since W is not retrieved directly, but is the by-product of combining τ 
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and reff retrievals, we henceforth concentrate on inhomogeneity parameters inferred from 

τ distributions only. 

 

b. Inhomogeneity of liquid clouds vs. inhomogeneity of ice clouds 

The possible outcomes of the MODIS cloud thermodynamic phase identification 

algorithm are “uncertain phase”, “mixed phase”, “ice” or “liquid water” (Platnick et al., 

2003). In this subsection we focus on the differences in inhomogeneity between the two 

“unambiguously” defined thermodynamic phases, i.e., “ice” and “liquid” water. For thick 

clouds, phase determination is sensitive to the cloud state near its top. Clouds with strong 

vertical development will be classified as ice clouds due to their low brightness 

temperature even if they consist of liquid droplets at lower levels. By the same token, 

pixels where relatively thick ice clouds overlie lower-level liquid clouds will probably 

also be assigned the ice phase. 

Table 1 indicates that the global values of the inhomogeneity parameters for July 

are similar for water and ice clouds. Table 3 suggests that the same applies for January (at 

least for Terra). The Table 3 entries for Land/Ocean and Fig. 2 reveal that this near 

equality is the result of some latitudinal cancellations. In July, ice clouds tend to be more 

heterogeneous in the Tropics, northern subtropics and northern polar regions (where 

retrievals are less reliable), but there are extensive mid-latitude regions in both the 

Northern (NH) and Southern hemisphere (SH) where the values of χ for both types of 

clouds are almost identical. In contrast, January ice clouds seem to be more homogeneous 

than liquid clouds in most of the globe except the zone near the equator, north of 40°N, 

and the high latitudes of the SH (again an area of less reliable retrievals). Overall, the 
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latitudinal variability of χ is more pronounced for ice clouds than liquid clouds. This is 

probably because ice cloud morphology and mean optical properties are quite different 

among ice clouds associated with mid-latitude weather systems (some of which may be 

of mixed phase), thick cirrus anvils/deep convective towers that occur frequently in 

equatorial regions, and relatively thin cirrus clouds blanketing extensive regions without 

distinct geographic preference. Moreover, the presence of ice phase increases the chances 

of multi-layer cloud occurrences. It is not therefore surprising that histograms of 

 

!
!C
(m,n)  for ice clouds are broader than their counterparts for liquid clouds (Fig. 3). In 

other words, ice clouds are more likely to be either extremely homogeneous or extremely 

heterogeneous compared to liquid clouds. 

 

c. Inhomogeneity from Terra vs. inhomogeneity from Aqua 

Although the full diurnal cycle cannot be resolved with the two sun-synchronous satellite 

platforms (Terra and Aqua) that carry MODIS, it is nevertheless instructive to examine 

whether there are distinct differences in cloud heterogeneity at global scales before and 

after local noon. Tables 3a and 3b give global, hemispheric, and land-only/ocean-only 

(global and hemispheric) averages of χ and νMLE, respectively, for both liquid and ice 

clouds and for both months. Aqua (crossing the equator at ~1:30 pm local time) has 

almost always smaller values of χ (larger apparent cloud heterogeneity) than Terra (with 

an approximate equatorial crossing time of 10:30 am), the exception being marine ice 

clouds. For summer ice clouds, the Terra-Aqua differences are greater over land than 

over ocean, probably reflecting the stronger diurnal cycle of convection over land. Figure 

4 shows !C
(n)  separately for Terra and Aqua. Terra liquid clouds appear more 
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homogeneous nearly everywhere for both months, except for northern midlatitudes, while 

ice clouds exhibit fewer differences in the zonal distribution of χ between the two 

satellites; the major divergence of values (Terra clouds more homogeneous than Aqua 

clouds) occurs in the SH tropics in January (an area of convective activity) and in the 

mid-latitudes of the NH in July (again, Terra clouds more homogeneous). 

 

d. Winter vs. summer inhomogeneity 

Table 3 and the figures shown thus far included results for both July and January, even 

though the contrast between these two months was not itself discussed. We will now 

revisit some of these results in order to concentrate on seasonal differences. The first 

order comparison, namely that among hemispheric averages, is captured in Table 3: for 

liquid clouds, winter and summer hemispheric values show seasonal symmetry, i.e., NH 

winter is close to SH winter and NH summer almost matches SH summer (this is better 

for Terra and applies even when land and ocean hemispheric values are compared 

separately); for ice clouds, NH winter matches SH winter, but NH summer has more 

inhomogeneous clouds than SH summer (this difference is less pronounced for Aqua and 

is driven by marine clouds for both satellite platforms). Overall, clouds are more 

inhomogeneous in the winter for both phases, with most of the contribution to this 

difference coming from marine clouds (especially for liquid clouds). 

Figure 4 shows increasing liquid cloud inhomogeneity as one moves from northern 

to southern latitudes in July while the opposite takes place in January. The July and 

January values of !C
(n)  meet around the Tropics, but then diverge in the mid-latitudes 

with July inhomogeneity being greater (smaller !C
(n)  values) in the SH and January 
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inhomogeneity being greater in the NH. Same mid-latitude behavior can be discerned for 

ice clouds, but in this case there is a trough of local inhomogeneity maximum in the 

Tropics which highlights the contrast between the Tropics (deep convective clouds) and 

summer mid-latitudes (cirrus). Still, the ice clouds of winter mid-latitude storm systems 

(stratiform precipitating clouds that may be of mixed phase), observed under lower 

illuminations, appear more inhomogeneous than tropical convective clouds. 

 
e. Day to day variability of cloud inhomogeneity 

Daily global or hemispheric values of the inhomogeneity parameters can be derived from 

eq. (9) (and its counterparts for ν). In this subsection we highlight some aspects of the 

day to day variability of these values with the aid of Fig. 5 which summarizes the results 

in boxplot form (see caption for explanation of the information conveyed). The plot 

features to concentrate on is the width (distance between top and bottom) of the boxes 

and the distance between the endpoints of the lines extending from the top and bottom of 

the boxes. Both features give a quantitative assessment of the range of 
 
!!
l

C , i.e., the larger 

they are the larger the day-to-day variability. Hemispheric values exhibit significantly 

larger day-to-day variability than global values, as expected, with the SH being in general 

more variable in time, regardless of whether it is winter or summer. Ice cloud 

inhomogeneity on global scales changes more from day to day than that for liquid clouds, 

complementing previous results on the width of 
 

!
!C
(m,n)  histograms. Finally, there is 

slight tendency of the day-to-day variability of 
 
!!
l

C  for Terra to be smaller than that of 

Aqua for liquid phase clouds while the opposite occurs for ice clouds. 
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f. Geographical distribution of inhomogeneity 

In this section we examine regional characteristics of the inhomogeneity parameters that 

briefly touch on the behaviour of individual cloud regimes. Only the major features are 

discussed here with detailed analysis of specific regions with a multi-month dataset left 

for a future study. Zonal distributions of χ have already been shown in previous figures 

(e.g., Fig. 4). In those figures it can be seen that the most inhomogeneous clouds are 

observed in the mid-latitudes of the winter hemispheres. Local minima in !C
(n)  for 

liquid clouds are observed around 60° in the winter hemispheres, while for ice clouds the 

minimum shifts to ~45° S during the SH winter and ~55°N for during NH winter. In the 

vicinity of the Intertropical Convergence Zone (ITCZ), coarsely identified as the tropical 

local maximum in cloud fraction and τ (not shown), !C
(n)  is close to 0.7 (in general 

agreement with the high cloud results of RDC). 

Zonal analysis was also performed separately for land and ocean gridpoints (coastal 

gridpoints containing both ocean and land surfaces were excluded from the calculations). 

The much weaker inhomogeneity of continental liquid and ice clouds in the Tropics and 

Subtropics relative to marine clouds is reversed at mid- and high latitudes of the summer 

hemispheres (Fig. 6). Table 3 indicates that on global scales continental liquid clouds are 

less inhomogeneous than marine liquid clouds (as was found by RDC); for ice clouds this 

is also generally true, with the exception of summer afternoon clouds. 

Plates 1 and 2 show the full geographical distribution of 
 

!
!C
(m,n)  as derived from 

eq. (7) for Terra. These maps of 
 

!
!C
(m,n)  can be compared with similar maps from 

ISCCP provided separately for low, middle and high clouds in http://isccp.giss.nasa.gov 
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even though the latter show the inhomogeneity parameter ε, which relates to χ via ε ≈ 1-χ  

only within the range of optical thickness for which ETA works best (τ~5-30). Direct 

comparison of MODIS and ISCCP has also other caveats: the grid on which the 

parameters are evaluated (1°x1° for MODIS, ~(280km)2 for ISCCP) is different, and so is 

the pixel size of the original retrievals (1 km for MODIS, ~5 km for ISCCP), and the 

sampling scale (~5 km for MODIS, ~30 km for ISCCP). Other factors that distinguish the 

two datasets, are the different temporal sampling (sun-synchronous vs. geostationary) and 

the different cloud retrieval methods. 

The marine stratocumulus regimes off the west coasts of N. America, S. America, 

and south-central Africa appear rather homogeneous in these maps with values of χ 

greater than ~0.85 in July and above ~0.8 in January (decreasing as one moves away 

from the coast), consistent with the satellite values of Pincus et al. (1999). These values 

are, however, larger than ~0.7 and ~0.6 found by Cahalan et al. (1994) and Cahalan et al. 

(1995) for FIRE (First ISCCP Regional Experiment) and ASTEX (Atlantic 

Stratocumulus Transition Experiment) marine boundary layer clouds, but which were 

based on different measurements (one or half minute-averaged microwave radiometer 

ground measurements) resolving temporal and not spatial (as in MODIS) variations. RDC 

finds annual values of ε between 0.1 and 0.2 for these cloud systems which correspond to 

an approximate range of 0.8-0.9 for χ. The region of active convection over Indonesia 

(ice cloud panels) appears to be characterized by χ values close to 0.6 (annual ε between 

0.3 and 0.4 in RDC). The same value approximately applies for mid-latitude storm 

systems of both winter hemispheres. The ice clouds of the summer hemispheres are quite 
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homogeneous with values of χ above 0.8 in most regions while the annual values of ε in 

RDC for mid-latitude high clouds are between 0.1 and 0.2 for both hemispheres. 

Comparison with the ISCCP results of RDC is not straighforward only for the reasons 

previously mentioned, but also because of the different cloud-type classification. Still, the 

first-order visual ISCCP-MODIS map comparison for the two months of our analysis 

with corresponding seasonal results in the ISCCP website suggests a large degree of 

qualitative agreement. 

 

g. Relationship between χ and cloud fraction 

If cloud horizontal inhomogeneity were to be diagnosed in an LSM via an observation-

based parameterization, vertical profiles of inhomogeneity would ideally be needed. This 

is because LSMs have vertically discretized atmospheres, and therefore, clouds. As has 

been noted in a prior discussion, this paper describes horizontal variations of total cloud 

optical thickness, a limitation that cannot be overcome with the present dataset. Hence, 

unless single layer clouds are reliably identified and the variability is assumed not to 

change with height (Barker et al., 1996; Oreopoulos and Barker, 1999), it would not be 

entirely justified to use the present dataset to develop parameterizations of cloud 

inhomogeneity. Nevertheless, it may still be interesting to look at the relationship 

between MODIS cloud inhomogeneity and cloud fraction since there have been previous 

efforts along this direction (Barker et al., 1996; Oreopoulos and Davies, 1998b). 

If all gridpoints of a single day with liquid phase clouds are used to scatterplot χ vs. 

cloud fraction, at first glance there appears to be no apparent relationship. Indeed, when χ 

values are averaged within individual cloud fraction bins (large points in Fig. 7), mean χ 
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seems to remain relatively constant around 0.7 for cloud fractions up to ~0.9. However, 

there is a clear increase for the last two cloud fraction bins. Remarkably, the almost 

overcast gridpoints (bin 0.99-1 in Fig. 7) are distinctly more homogeneous (on average) 

than the gridpoints falling within the 0.9-0.99 bin. This general tendency was also 

confirmed (for both months and satellite platforms) when the analysis was restricted to 

the three marine stratocumulus regions off the coasts of California, Peru, and Angola (not 

shown) in agreement with Barker et al. (1996), but in disagreement with Cahalan et al. 

(1994) who found from diurnal analysis of microwave radiometer data that California 

marine stratocumulus during FIRE were most variable close to their cloud fraction peak. 

Further research is apparently needed to clarify the causes of these conflicting results and 

to relate them to the physical processes that generate, maintain, and destroy these clouds. 

It should be pointed out that even for our current dataset the relationship between χ 

and cloud fraction is not unique or simple. Fig. 8 shows that it depends on cloud phase 

and mean optical thickness. For liquid clouds of intermediate 

  

!  (between 10 and 20), for 

example, χ follows a monotonic increase with cloud fraction, while for thick clouds of 

both phases (

  

!  > 20)  the relationship is more complex. It would be interesting to examine 

whether future LSM schemes with subgrid cloud variability capabilities will be able to 

reproduce such behaviour for integrated τ. 

 

5. Discussion and Conclusions 

We provide the first extensive attempt to infer horizontal variability of total cloud optical 

thickness τ (“cloud inhomogeneity”) from the MODIS instrument aboard Terra and 

Aqua. The climatology of cloud inhomogeneity is based on calculations of monthly 
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inhomogeneity parameter values at 1°x1°, zonal, and global spatial scales for two full 

months (January 2004 and July 2003) of MODIS Atmosphere Level-3 data. 

Geographical, diurnal, and seasonal changes of cloud inhomogeneity are studied 

separately for liquid and ice phase clouds. 

Cloud inhomogeneity is found to be generally weaker in summer than in winter, 

weaker over land than ocean (except for afternoon summer ice clouds), weaker in general 

for local morning (Terra) than local afternoon (Aqua), similar for liquid and ice clouds on 

a global scale (especially for morning clouds), but with larger temporal and spatial 

variations for ice clouds. It is also relatively insensitive to whether water path or τ 

distributions are used. Day to day variability of hemispheric values is stronger for ice 

clouds and for the Southern Hemisphere. Monthly values at hemispherical scales of the 

inhomogeneity parameter ν (roughly the square of the ratio of τ mean to standard 

deviation) vary widely from ~1.7 (mean MLE value of marine afternoon liquid clouds 

during the NH winter) to ~4 (mean MLE value for continental morning ice clouds during 

SH winter), while for the inhomogeneity parameter χ (the ratio of the logarithmic to 

linear mean), which is the centerpiece of our presentation, from ~0.65 to 0.8. Zonal 

monthly values of χ below 0.6 are possible while monthly values of individual gridpoints 

occasionally assume values below 0.5. Variability of τ is not clearly related to cloud 

fraction (except perhaps for liquid clouds of intermediate τ), but for overcast or near 

overcast regions of both phases there is a tendency for clouds to be more homogeneous. 

This needs further investigation in view of the expectation that overcast scenes will be 

less affected by 3D effects than broken cloud scenes. Finally, there is broad agreement in 
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geographical distributions of MODIS and ISCCP inhomogeneity despite inherent 

differences in cloud retrieval and parameter calculation methods. 

We have demonstrated that analysis of MODIS Level-3 data reveals interesting 

aspects of the climatology of cloud horizontal inhomogeneity and can be used for 

validation of LSM schemes that are able to predict subgrid cloud variability (e.g., 

Tompkins, 2002). The MODIS retrievals, are of course, subject to the limitations of 

plane-parallel retrievals, but the impact of neglecting cloud 3D radiative effects cannot be 

easily investigated with the current dataset. Low solar illuminations increase cloud 

variability as perceived by plane-parallel retrievals (e.g., Oreopoulos et al., 2000), 

making winter clouds appear more heterogeneous than summer clouds even if the cloud 

fields themselves remained unchanged. Separating actual from perceived changes of 

cloud inhomogeneity remains an open issue to be perhaps addressed with new 

aggregation strategies of Level-2 MODIS retrievals. The nature of sun-synchronous 

satellite orbits, however, undermines such efforts by convolving solar geometry, latitude, 

seasonal, and cloud type dependencies. Future studies examining systematic cloud 

retrieval dependencies on view angle may therefore be more illuminating. 

The non-linear dependence of solar and longwave radiation on cloud optical 

properties has to be taken into account for accurate calculations of the radiative energy 

budget. The present work, along with that by Rossow et al. (2002), has reaffirmed that 

sufficient observations currently exist to achieve this. One possible approach is to provide 

Column Radiation Models with cloud inhomogeneity information from MODIS along 

with vertical variability from Cloud Resolving Models or future CloudSat retrievals 

(Stephens et al., 2002). We hope to perform such a study in the future. 
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Table 1 

Liquid Ice  

τ1 τ2 τ1 QA  W1 W2 τ1 τ2 τ1 QA  W1 W2 

χ  0.745 0.742 0.771 N/A 0.731 0.735 0.735 0.780 N/A 0.747 

νMLE 2.87 2.76 3.19 N/A 2.66 2.91 2.89 3.40 N/A 2.85 

νMOM 2.62 2.55 2.96 2.63 2.37 2.71 2.69 3.09 3.00 2.61 
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Table 2  

 

χ  νMLE (liq) νMOM (liq) νMLE (ice) νMOM (ice) 

0.50 1.06 0.87 1.03 0.82 

0.55 1.29 1.09 1.28 1.05 

0.60 1.58 1.35 1.59 1.34 

0.65 1.93 1.69 1.98 1.72 

0.70 2.36 2.10 2.46 2.21 

0.75 2.89 2.62 3.05 2.83 

0.80 3.53 3.27 3.79 3.63 

0.85 4.32 4.08 4.71 4.65 

0.90 5.27 5.09 5.84 5.96 

0.95 6.45 6.34 7.26 7.64 

 

 



 33 

Table 3a  

TERRA AQUA 

January July January July 

 

Liquid Ice Liquid Ice Liquid Ice Liquid Ice 
GLOBAL 0.748 0.748 0.745 0.735 0.711 0.739 0.710 0.737 
NH 0.716 0.710 0.786 0.757 0.682 0.707 0.759 0.753 
SH 0.774 0.784 0.700 0.709 0.736 0.770 0.658 0.718 
LAND 0.788 0.748 0.796 0.798 0.750 0.716 0.759 0.748 
OCEAN 0.736 0.750 0.727 0.716 0.700 0.750 0.694 0.735 
NH LAND 0.776 0.721 0.793 0.793 0.754 0.717 0.763 0.740 
NH OCEAN 0.680 0.704 0.782 0.739 0.640 0.701 0.756 0.760 
SH LAND 0.802 0.795 0.796 0.802 0.735 0.709 0.739 0.768 
SH OCEAN 0.768 0.781 0.685 0.697 0.736 0.782 0.645 0.711 

 

Table 3b  

TERRA AQUA 

January July January July 

 

Liquid Ice Liquid Ice Liquid Ice Liquid Ice 
GLOBAL 2.96 3.18 2.87 2.91 2.58 3.09 2.57 2.87 
NH 2.64 2.64 3.35 3.21 2.34 2.60 3.10 3.11 
SH 3.23 3.68 2.34 2.54 2.79 3.54 1.99 2.58 
LAND 3.66 3.34 3.39 3.70 3.16 2.90 2.95 3.00 
OCEAN 2.76 3.15 2.70 2.68 2.41 3.19 2.45 2.84 
NH LAND 3.70 3.15 3.31 3.53 3.37 3.02 3.00 2.83 
NH OCEAN 2.00 2.33 3.38 3.05 1.73 2.35 3.15 3.25 
SH LAND 3.42 3.60 3.46 4.07 2.63 2.55 2.71 3.48 
SH OCEAN 3.19 3.69 2.16 2.34 2.82 3.74 1.88 2.46 
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Table captions 

Table 1 Comparison of different methods to obtain global inhomogeneity parameters for 

Terra July 2003 data. The subscript “1” refers to using the SDS moments, and the 

subscript “2” to using the histogram SDS; “τ” is for optical thickness-based parameters 

and “W” for water path-based parameters; QA refers to QA-weighted optical thickness 

moments (see text). No moment-based estimates of the inhomogeneity parameters χ and 

νMLE can be obtained for W since there is no lnW SDS. 

 

Table 2 Conversion guide between !C  and !
MLE

C  and !
MOM

C  derived from Terra 

July 2003 and January 2004 data. 

 

Table 3a Summary of monthly global (or hemispheric) inhomogeneity parameter χ 

values as derived from eq. (10). 

 

Table 3b As in Table 3a, but for νMLE. 
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Figure captions 

Figure 1 !C
(n) from eq. (8) for liquid (top) and ice (bottom) clouds as inferred from 

Terra τ and W histogram SDSs for January 2004 and July 2003. 

Figure 2 !C
(n) from eq. (8) for liquid and ice phase clouds as inferred from Terra 

τ  SDS moments. Top panel is for January 2004 and bottom panel for July 2003. 

Figure 3. Comparison of liquid and ice phase histograms of the monthly values of χ 

derived from eq. (7) for Terra. Top panel is for January 2004 and bottom panel for July 

2003. 

Figure 4 !C
(n) from eq. (8) for Terra and Aqua. Top panel is for liquid clouds and 

bottom panel is for ice clouds. 

Figure 5. Box plots summarizing the day to day variability of 
 
!!
l

C  as derived from the 31 

daily values estimated using eq. (9). Each box encloses 50% of the data with the median 

value of the variable displayed as a line. The top and bottom of the box mark the limits of 

±25% of the population. The lines extending from the top and bottom of each box 

(“whiskers”) mark the minimum and maximum global or hemispheric values of χ that 

fall within an acceptable range. Outliers–defined as values greater (smaller) than the 

upper (lower) quartile value plus (minus) 1.5 times the interquartile distance, are 

displayed with a small circle symbol. The top panel is for liquid clouds and the bottom 

panel for ice clouds. The plain white boxes are for January 2004 and the gray boxes for 

July 2003 (also separated by the vertical dashed line). The first box of each 3-box group 

is for the entire globe, the second for the NH only, and the third for the SH only (see, for 
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example, the first box group of the bottom panel). The solid line in the middle of each 

plot separates Terra and Aqua results. 

Figure 6 !C
(n) from eq. (8) for Terra, calculated separately for land and ocean for both 

phases and both months. 

Figure 7 Inhomogeneity parameter χ1(m,n) vs. cloud fraction C1(m,n) for July 1st, 2003, 

liquid phase clouds from Terra observations. Only gridpoints for which the ice phase 

cloud fraction is less than 0.05 were included in the plot. The large symbols represent 

averages for 0.1-wide cloud fraction bins, except the last two which are for the 0.9-0.99 

and 0.99-1 bins. 

Figure 8 Ensemble mean χ from July 2003 Terra data for all 1°x1° gridpoints with 

clouds of one of three ranges of mean optical thickness and cloud fractions falling within 

the bins shown in the abscissa. Only gridpoints where the cloud fraction of the other 

phase is less than 0.05 are considered. “Thin” means gridpoint mean optical thickness 

less than 10, “intermediate” between 10 and 20, and “thick” greater than 20. Top panel is 

for liquid clouds, and bottom panel is for ice clouds. 

Plate 1 Geographical distribution of 
 

!
!C
(m,n)  calculated from eq. (7) for liquid clouds. 

Top panel is for Terra January 2004, and bottom panel is for Terra July 2003. 

Plate 2 As in Plate 1, but for ice clouds. 
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